目前小间距LED屏幕的难题之一是“低亮低灰”。即在低亮度下的灰度不够。要实现“低亮高灰”,目前封装端采用的方案是黑支架。由于黑支架对芯片的反光偏弱,所以要求芯片有足够的亮度。
其次是显示均匀性问题。与常规屏相比,间距变小会出现余辉、第一扫偏暗、低亮偏红以及低灰不均匀等问题。目前,针对余辉、第一扫偏暗和低灰偏红等问题,封装端和IC控制端都做出了努力,有效的减缓了这些问题,低灰度下的亮度均匀问题也通过逐点校正技术有所缓解。但是,作为问题的根源之一,芯片端更需要付出努力。具体来说,就是小电流下的亮度均匀性要好,寄生电容的一致性要好。
第三是可靠性问题。现行行业标准是LED死灯率允许值为万分之一,显然不适用于小间距led显示屏。由于小间距屏的像素密度大,观看距离近,如果一万个就有1个死灯,其效果令人无法接受。未来死灯率需要控制在十万分之一甚至是百万分之一才能满足长期使用的需求。
总的来说,小间距LED的发展,对芯片段提出的需求是:尺寸缩小,相对亮度提升,小电流下亮度一致性好,寄生电容一致性好,可靠性高。
三、芯片端的解决方案
1. 尺寸缩小芯片尺寸缩小
表面上看,就是版图设计的问题,似乎只要根据需要设计更小的版图就能解决。但是,芯片尺寸的缩小是否能无限的进行下去呢?答案是否定的。有如下几个原因制约着芯片尺寸缩小的程度:
(1)封装加工的限制。封装加工过程中,两个因素限制了芯片尺寸的缩小。一是吸嘴的限制。固晶需要吸取芯片,芯片短边尺寸必须大于吸嘴内径。目前有性价比的吸嘴内径为80um左右。二是焊线的限制。首先是焊线盘即芯片电极必须足够大,否则焊线可靠性不能保证,业内报道最小电极直径45um;其次是电极之间的间距必须足够大,否则两次焊线间必然会相互干扰。
(2)芯片加工的限制。芯片加工过程中,也有两方面的限制。其一是版图布局的限制。除了上述封装端的限制,电极大小,电极间距有要求外,电极与MESA距离、划道宽度、不同层的边界线间距等都有其限制,芯片的电流特性、SD工艺能力、光刻的加工能力决定了具体限制的范围。通常,P电极到芯片边缘的最小距离会限定在14μm以上。
其二是划裂加工能力的限制。SD划片+机械裂片工艺都有极限,芯片尺寸过小可能无法裂片。当晶圆片直径从2英寸增加到4英寸、或未来增加到6英寸时,划片裂片的难度是随之增加的,也就是说,可加工的芯片尺寸将随之增大。以4寸片为例,如果芯片短边长度小于90μm,长宽比大于1.5:1的,良率的损失将显著增加。